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RANDOM SHAPE AND REFLECTANCE REPRESENTATION FOR 3-D 
ASSISTED/AUTOMATED TARGET RECOGNITION 

 
 

 1. Summary 
 This document is the Final Report for research on ATR Center RASER Grant FA8650-07-
1-1113. The objective of this project was to expand the capabilities of model-based 
assisted/automated target recognition (ATR) systems by explicitly accommodating variation in 
shape and reflectance across elements of a broad target class. Work is set in the context of three-
dimensional point-cloud data sets, such as LADAR or other structured light methods, and builds 
off a data representation model that represents measurement uncertainty probabilistically. Under 
this data model, the likelihood that a particular target gave rise to an observed point cloud can be 
computed using a collection of numerical integrations over the surface of a model of a target. 
Selection of the target with the largest likelihood then yields the classification result with the 
minimum probability of error (MPE) that can be achieved using a given sample of observed 
points. Our focus is on the study of anytime ATR algorithms, which are structured to support 
classification result queries that are placed at unknown, arbitrary times. A naïve anytime 
algorithm based on the MPE decision rule can be defined in terms of round-robin calculations of 
likelihoods for observed points. Our approach to improving the performance of such a method is 
to use offline calculation of shape and reflectance-based performance estimates to to guide the 
sequence in which likelihoods are calculated and used. Both analytical results and numerical 
experiments on simulated data support the conclusion that pair-wise performance estimates can 
be used to achieve a substantial improvement in the classification accuracy as a function of 
computing time, relative to the naïve round-robin algorithm. 
 

 2. Introduction 
 For several years there has been a general interest in the assisted/automated target 
recognition (ATR) community in methods that permit a direct mapping of hierarchical target 
taxonomies into recognition systems. Efforts to develop such methods have met with varying 
success in specific cases, but as yet there seems to be no clear dominant approach that can be 
practically applied across a wide range of target families. The objective of our project, ATR 
Center RASER Grant FA8650-07-1-1113, is to contribute in this area by expanding the 
capabilities of model-based ATR systems using a method for explicitly accommodating variation 
in shape and reflectance across elements of a broad target class. 
 Classification of objects from three-dimensional measurement systems, such as LADAR, 
IFSAR, and optical stereo, is becoming increasingly important as development of these sensors 
advances. Our work is set in the context of three-dimensional point-cloud data sets and builds off 
a data representation model that represents measurement uncertainty probabilistically, with 
structure that can account for a variety of error sources, including target motion during imaging, 
nonzero optical footprint of the sensors, and misregistration of data from multiple sensors in a 
networked environment. Under this data model, the likelihood that a particular target gave rise to 
an observed point cloud can be computed using a collection of numerical integration over the 
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surface of a model of the target. Selection of the target with the largest likelihood then yields the 
classification result with the minimum probability of error (MPE) that can be achieved using a 
given sample of observed points. The researchers on this project have developed a body of work 
on the MPE decision rule. A basic classification algorithm for the 3D data sets is developed in [1] 
and analytical performance results are demonstrated. This basic algorithm is adapted to target 
recognition in highly cluttered environments in [2]. The result is a joint segmentation-
classification algorithm that explicitly accounts for ground clutter and obscuring objects in the 
environment. In [3], basic design questions are addressed such as the required number of points 
on target, allowable pose uncertainty, and effect of standoff distance on target recognition from 
LADAR data. Related issues, such as evaluation of the kinds of approximations necesssary to 
apply dynamic search algorithms over pose resolution hierarchies are addressed in [4] and [5]. 
 The MPE algorithm developed in [1, 2, 3, 4, 5] has a number of desirable theoretical 
properties, including immunity to peaking phenomena, robust behavior in the presence of clutter 
and small unknown location and pose errors, and the capability to be extended to account for 
completely unknown pose. In this project, our focus is on the study of anytime ATR algorithms, 
which are structured to support classification result queries that are placed at unknown, arbitrary 
times. Anytime algorithms are distinct from contract algorithms, which are structured to exploit 
a fixed amount of time (or operations) available for computation. A naïve anytime algorithm 
based on the MPE decision rule can be defined in terms of round-robin calculations of 
likelihoods for randomly ordered sample points. The contract MPE algorithm is theoretically 
optimal for a given number of sample points in the sense that no greater accuracy can be 
achieved, under the assumed data model. The algorithm uses likelihoods that are, in general, 
uniformly expensive to compute but need not be uniformly informative. This observation raises 
the possibility there are methods for sequencing likelihood calculations that are superior to the 
naïve approach in accuracy as a function of computing time. 
 Our approach to ordering likelihood calculation uses offline calculation of shape and 
reflectance-based performance estimates for pairs of objects from the target library. These 
performance estimates effectively provide an approximation to the accuracy versus computation 
time tradeoff in a classification problem defined over a pair of targets. The notion of the anytime 
algorithm is that, given a fixed amount of time available for computation, it is more efficient to 
spend less time on targets that are easy to differentiate and more time on targets that are difficult 
to differentiate. Our anytime algorithm, which we call the performance-based tree (PBT) 
algorithm, uses pairwise performance estimates to seed a tournament-style tree structure. We 
performed a number of numerical tests of the PBT algorithm using polygonal models of basic 
geometric shapes (such as spheres) and a variety of air and ground vehicles. Results and 
numerical experiments on simulated data support the conclusion that pair-wise performance 
estimates can be used to achieve a substantial improvement in classification accuracy as a 
function of computing time, relative to the naïve round robin algorithm. 
 The reminder of the report is organized as such: The following subsections outline the 
probability model for point cloud measurement, the minimum probability of error decision rule, 
and the PBT algorithm. Section 3 covers the assumptions, procedure, and simulation 
environment used to evaluate the PBT algorithm against the naïve round-robin approach. Section 
4 presents the results from these experiments. Section 5 outlines a novel approach to 
classification that is particularly useful when the incremental cost of processing additional is 
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significantly greater than the incremental cost of collecting the data. Finally, Section 6 concludes 
the report with a discussion of the results and proposes future work based on these findings. 
 

 2.1 Data Model and Minimum Probability of Error Decision Rule 
 This section provides a brief introduction to the data model and decision rule that are the 
foundation for the research described later. Fuller treatment of these topics may be found in [1, 2, 
3, 4, 5]. 
 Let the set of points comprising the surface of an object be denoted by S, and let X* � S 
be a point on the surface given 3D coordinates as X* = [X1*, X2*, X3*]T, where superscript T 
denotes transpose. We assume this point is selected from the surface for measurement according 
to a conditional probability density px*|Θ,S(x*|Θ,S), where Θ represents the pose (location and 
rotation) of the object relative to the measurement platform. Let the measured location of the 
surface point X* be denoted by X = [X1, X2, X3]T. We will refer to X* as the point of origin for 
the measurement X, and model the observation as X = Θ 

 

∗ X* + N, where Θ 

 

∗ X* represents the 
relative pose transform applied to X* and gives the coordinates of the measured point in the 
same reference coordinate system as the measurement, and where N is a multivariate Gaussian 
distribution with zero mean. It follows that X is distributed as a multivariate Gaussian random 
variable with mean Θ * X* and variance ∑Θ,S is a 3 x 3 covariance matrix. The conditional 
probability density function for X is 
 

Equation 1. 
 

The posterior distribution for a measured point from surface S with pose Θ is 
 

Equation 2. 
 

 A worst-case scenario is to assume no prior information about the sensor line-of-sight, 
and the measured points are modeled as uniformly distributed over the object's surface. Another 
worst-case assumption is that there is no directional preference in the measurement noise, which 
may be modeled by letting ∑ be a diagonal matrix with equal diagonal elements. 
 Given Θ, the pose, of the measured object relative to the measurement platform, and 
given that the set of measured surface points is independent, the likelihood of a point-cloud  
χ = {Xk}K

k=1 is 
 

Equation 3. 
 

 The recognition problem of interest is to determine which object out of the target set 
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resulted in the set of measured surface point locations. The minimum probability of error (MPE) 
decision rule, which we adopt, chooses the object that maximizes the likelihood of the 
observations. That is, we select the surface index that solves 

Equation 4. 
 

where Pm is the prior associated with surface m. The assumption that Θ is known may not be 
reasonable in all circumstances. In practice, it would be desirable to combine known pose 
algorithms with a search over the space of possible locations and orientations, as is described in 
[4] and [5]. Note that no distinction is made between points on an object and points on the 
background or other clutter. In [2] an approach to dealing with clutter is developed that uses the 
algorithms to jointly infer the presence of an object and the environment in which it resides 
(background structure, obscuration, etc.). An alternative approach is to employ a segmentation 
algorithm, eliminating points that are not likely from one of the objects under consideration [5]. 
 

 2.2 Pairwise Performance Estimation 
 The approach to performance estimation that is outlined in this section was first proposed 
in [5], and is extended in [6]. This method is concerned with finding the conditional probability 
of correct classification between pairs of hypotheses, from which we build anytime algorithms 
for multiple hypothesis testing as described in Section 2.3. In some cases, closed-form 
expressions for the conditional probability of correct classification can be derived directly from 
the underlying statistical distributions. With synthetic aperture radar (SAR) imagery data, to take 
an example, DeVore considered a recognition model that allows analytic computation of the 
conditional probability of correct classification [7]. In general, however, we will be limited to 
finding estimators for the pair-wise conditional probability of correct classification, along with 
upper and lower bounds on this probability. We derived these estimators using log-likelihood 
ratios computed from sample data. 
 Let px*|Θ,S(x*|Θ,S) be the probability density function for an observation X given that the 
surface S is measured with relative pose Θ. Let χ = {Xk}K

k=1 be a point cloud that is measured 
from either S1 or S2, the two possible object surfaces in this problem. For simplicity, we assume 
the two objects have equal prior probability. Then the minimum probability of error decision rule 
can be written as a single inequality; i.e. we would choose S1 if and only if L(X1, X2,...,XK) ≥ 0, 
where 

 
Equation 5. 

 
Because Lk are independent and identically distributed, E[L|Θ, Sm], and var(L|Θ,Sm) = 
Kvar(Lk|Θ,Sm). The conditional mean and variance of Lk given Sm and Θ can be written as 
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Equation 6. 
The variable L is a sum of independent, identically distributed random variables and so by the 
central limit theorem can be approximated as a Gaussian distribution with mean E[L|Θ, Sm] and 
variance var(L|Η,Sm) for large K. When the object being observed is S1, we make a correct 
decision if L > 0. Thus the approximate conditional probability of a correct decision is 
 

Equation 7. 
 

where Φ is the cumulative distribution function for a standard Gaussian random variable. 
 From the above, we know that an estimate of the probability of correct classification can 
be formed from 

 

E Lk |θ,S1[ ]/ var(Lk |θ,S1) .To obtain this ratio, we generate N sample points 
{Xn}, n = 1, ... N1 from S1 and then compute the log-likelihood ratio 
 

Equation 8. 
 

for n = 1,...,N. The sample mean and sample variance of the log-likelihood ratio are then 
respectively 
 

 

l =
1
N

ln    and   
n =1

N

∑ σ l
2 =

1
N

(ln − l )2

n =1

N

∑   

Equation 9. 
  
Then 

 

E Lk |θ,S1[ ]/ var(Lk |θ,S1) ≈ l /σ l .  From [8], a 1 – α confidence interval is 
 

Equation 10. 
 

Therefore, we can compute the estimated accuracy 

 

ˆ p  (i.e. conditional probability of correctly 
classifying S1), and the lower bound 

 

ˆ p l  and upper bound 

 

ˆ p u (i.e. the two bounds together provide 
the 1 - α confidence interval for the accuracy) as follows 
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Equation 11. 
 

 The estimations outlined above are based on log-likelihood ratio samples, which can be 
conveniently simulated based on the targeted operation scenario or acquired from actual 
measurements. This sampling method, though it does not produce estimates as accurate as those 
that may be found by extensive measurements, requires little computation and therefore may be 
suitable when a quick and rough answer is needed. Creating pair-wise estimates is an operation 
that can be done offline ahead of time and stored in a database before deployment of a system. If 
a system has multiple sensors or a single sensor that operates at various ranges causing various 
levels of measurements, then a set of performance estimates must be created for each sensor 
scenario. These performance estimates may be used repeatedly in the algorithm described in 
Section 2.3, provided the target library and sensors do not change. 
 We tested the proposed performance estimators on simulated data from three different 
operational scenarios of varying noise characteristics (low, medium, and high) and for different 
pairs of vehicles. The results show that the estimated accuracy is generally lower than the 
accuracy obtained through extensive simulations in the low and medium noise scenarios. This 
effect is a consequence of the fact that our central limit theorem based method is inclined to 
underestimate actual performance when most of the log-likelihood ratio samples are greater than 
0, as occurs in these two scenarios when the number of points on target are small. This tendency 
to underestimate also causes the estimated lower bound in the high noise scenario to dominate 
the estimated lower bounds in the low and medium scenarios when classifying pairs of vehicles 
that have very different sizes and shapes. The results also have shown that more log-likelihood 
ratio scenarios can help improve precision of the estimated accuracy and reduce the confidence 
interval length. The lower bounds produced by this method tend to underestimate system 
performance, and so are often suitable when conservative estimates are needed. 
 

 2.3 Anytime algorithms 
 This subsection describes two anytime ATR algorithms, each of which is structured to 
support classification result queries that are placed at unknown, arbitrary times. Anytime 
algorithms are distinct from contract algorithms, which are structured to exploit a fixed amount 
of time (or operations) available for computation. 
 
 2.3.1 UC-MPE Algorithm 
 A naïve anytime algorithm based on the MPE decision rule can be defined in terms of 
round robin calculations of likelihoods for randomly ordered sample points. We term this the 
uniform computation, minimum probability of error (UC-MPE) algorithm. When queried for an 
answer, UC-MPE will return the MPE target, which is the target with the maximum aggregate 
likelihood with respect to the sample points considered up to the time of the query. Note that, if 
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run sufficiently long, UC-MPE will converge in output to the contract MPE algorithm of Section 
2.1. UC-MPE serves as a baseline against which to measure the performance of the PBT tree 
algorithm introduced below. 
 
 2.3.2 PBT Multi-tree Algorithm 
 The contract MPE algorithm is theoretically optimal for a given set of sample points in 
the sense that no greater accuracy can be achieved, under the assumed data model. The algorithm 
uses likelihoods which are, in general, uniformly expensive to compute but need not be 
uniformly informative. This observation raises the possibility there are methods for sequencing 
likelihood calculations that are superior to the naïve approach in accuracy as a function of 
computing time. Our approach to ordering likelihood calculation uses offline calculation of 
pairwise performance estimates in the manner described in Section 2.2. These performance 
estimates effectively provide an approximation to the accuracy versus computation time tradeoff 
in a classification problem defined over a pair of targets. The notion of our anytime algorithm, 
which we call the performance-based tree (PBT) algorithm, is to use pairwise performance 
estimates to seed a tournament-style tree structure, with the motivation that given a fixed amount 
of time available for computation it is more efficient to spend less time on targets that are easy to 
differentiate and more time on targets that are difficult to differentiate.  The PBT algorithm is 
further described in [23, 24]. 
 The PBT algorithm produces a final classification result by running a hierarchical 
tournament based on hypothesis tests on pairs of targets. Pairwise performance estimates 
(computed using the method of Section 2.2) are used to determine the amount of computation to 
devote to each hypothesis test. This is done by fixing a desired classification accuracy level ρ ≥ 
0.5 and then, for each target pair, retrieving the estimated number of likelihoods needed for to 
achieve that accuracy level for the pairwise classification problem. The base level for the 
tournament tree consists of all targets in the library, organized into pairs (methods for choosing 
base level pairs are described below). Winners of each pairwise comparison advance to the next 
level of the tree. Because they are expensive to compute, likelihoods that were calculated in prior 
levels of the tree are saved and reused where possible. The final pairwise comparison yields the 
classification answer for the entire problem. 
 Figure 1 shows an example of the tournament structure in the PBT algorithm. The desired 
pairwise classification accuracy, ρ, is 0.75. The pairwise performance curve for Car A and Tank 
C dictates likelihoods for 5 sample points be used to achieve this accuracy. Likewise, likelihood 
for 25 sample points are used for Tank A and Tank B. If Tank B and Tank C are the maximum 
likelihood winners of their pairwise comparisons in the base level, then they are compared at the 
next level, using likelihood for 50 sample points to again attempt to achieve a pairwise accuracy 
of 0.75. If Tank B wins that comparison it becomes classification output by the algorithm. 
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Figure 1. Single Pass Tree Algorithm 
 

 The multi-pass version of the PBT algorithm involves a sequence of tournaments in 
which the desired pairwise accuracy, ρ, in increased in each tournament by a fixed amount δ.  If 
δ is sufficiently small then multi-pass PBT may be considered to be an anytime algorithm, as a 
negligible amount of computation will be wasted if the algorithm is queried for an output in the 
midst of a pass through the tree.   Each completed pass through the tree yields a classification.  
Just as likelihoods were reused from level to level of the tree in the single pass PBT algorithm, 
likelihoods will be reused from one tree pass (tournament) to the next.  The process continues 
until the algorithm is stopped on the basis of a query for a final answer or until all sample points 
have been exhausted.  Figure 2 shows an example of the tournament structure in the multi-pass 
PBT algorithm and Figure 3 illustrate the notion of likelihood reuse between tournaments.  
 

Figure 2. Multiple Pass Tree Algorithm 
 

Figure 3. Likelihood Reuse in Multiple Pass Tree Algorithm 
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  The base level for the tournament tree consists of all targets in the library, 
organized into pairs. Pairings can be done randomly or arbitrarily, but given the availability of 
pairwise performance estimates it may be desirable to create pairs so that the overall number of 
likelihoods used in the base level is as small as possible. This can be done by finding a minimum 
weight perfect matching on a complete graph with targets as the nodes and edge weights that are 
the performance estimate of the number of likelihoods needed to achieve the desired accuracy for 
the corresponding pairwise classification problem. A perfect matching in a graph G is a subset of 
edges such that each node in G has exactly one incident edge from the subset. Given a real 
weight we for each edge e of G, the minimum-weight perfect matching problem is to find a 
perfect matching of minimum weight. Minimum-weight perfect matching has low-order 
polynomial computational complexity [9, 10]. 
 

Figure 4. Target Pairing in PBT Algorithm 
 

 3. Methods, Assumptions, and Procedures 
 Simulations were run using as targets both spheres and CAD models of a variety of land 
and air vehicles. Spheres with radial Gaussian noise were used because the basic shape trivializes 
likelihood calculations. Sphere likelihood calculations run approximately 150 times faster than 
CAD model calculations, which allowed for a greater variety of scenarios to be tested in a 
reasonable amount of time. Performance estimates for spheres can be derived analytically and 
are exact. CAD models have more complex shapes so there is more of an argument for 
algorithms detecting shape differences in addition to size differences. CAD models may be used 
with a LADAR simulator, which allows for the future possibility of incorporating more realistic 
noise models. 
 CAD models of approximately 50 air and land vehicles were supplied by the Air Force 
Research Lab for its 2003 3-D Challenge Problem.  Based on shape and size, the targets in this 
library can naturally be divided into classes (e.g., cars, aircraft, tanks). Note that the pairwise 
performance estimates described in Section 2 provide a structured method for class division.  
Standard techniques were used to either combine polygons, in cases where the fidelity of the 
CAD model exceeded that required for acceptably accurate numerical surface integration in 
likelihood calculation (as determined by empirical studies in [5]), or split them in converse cases. 
Simulated point cloud samples were obtained by using these CAD models as inputs to a LADAR 
simulator [11] set to use spherical Gaussian noise. Repeated sampling from the CAD model at 
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varying poses was used to produced point clouds that were both of the desired size and uniformly 
sampled over the surface.  For each target in the library, we generated a point cloud sample of 
50,000 simulated measured points, and then computed the likelihood of each point with respect 
to each target in the library; thus a pool of 50,000 x 50 likelihoods were available for 
experimentation. Performance estimates for the CAD model targets were computed using 1000 
sample points and the estimation method described in Section 2.2. 
 Experiments with the PBT multi-tree algorithm were run by first setting the variables: 
single pass or multi pass tree, standard decision rule or alternate decision rule, and minimum 
weight perfect matching pairings or randomized pairings. The number of replications performed 
on each experiment was chosen on the basis of the degree of smoothness desired in plots of 
averaged accuracy versus computation time, but 500 to 10,000 replications were typical.  
Experiments with the UC-MPE algorithm were performed in a similar way, with all likelihood 
coming from the same pre-computed pool. Figure 5 provides an example output showing 
recognition accuracy as a function of likelihoods consumed for the PBT multi-tree Tree and the  
UC-MPE algorithm on a target library containing four vehicle classes, each with four members.  
 

Figure 5. Recognition Accuracy as a Function of Likelihoods Consumed for a Target Library 
Containing Four Vehicle Classes, Each With Four Members 

 

 4. Results and Discussions 
 Numerical tests in the simulation environment yield several conclusions. Minimum 
weight perfect matchings give better performance than a random pairing, as one would expect. 
The trade-off of using minimum weight matchings is highly depending on the size of the target 
library, the average savings (influenced by the degree of differences in targets) provided by the 
minimum weight perfect matchings, and the complexity of the surface models (number of 
polygons in the CAD models). The single pass PBT algorithm did outperform the multi-pass 
variant, however when the minimum weight perfect matchings were used, the difference was 
nonexistent in some scenarios and much smaller in other scenarios. The multi-pass algorithm 
also has the significant benefit of being an anytime algorithm. Both versions of PBT generally 
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outperform UC-MPE. Using performance estimates to choose which targets have likelihoods 
computed on them indeed increased performance over the alternative method of using equal 
computation on all targets. 
 Using spheres as targets showed that as the target library size increases, the PBT 
algorithm has increasingly larger advantages in performance over the UC-MPE algorithm. The 
hypothesis is that if there are more target classes in the library, then more targets can be easily 
eliminated because all classes except the one containing the true target will be easy to distinguish 
from the true target. The sphere experiments suggested that a larger number of distinct target 
classes in the library will cause the BPT algorithm to increasingly outperform the UC-MPE 
algorithm. Some unexpected issues and complications were encountered after adapting the 
experimental test bench from one whose target library consisted of simulated spherical targets of 
varying radii to one with a library of 3D CAD models of a variety of real vehicles. The transition 
process itself is straightforward: in the experimental simulation scripts, replace all references to 
runtime-generated sphere data with offline-compiled vehicular target information (i.e., from 
sphere generation and online likelihood calculations to reference CAD models and likelihood 
tables produced from simulated LADAR point clouds). Running these benchmarks on real 
targets, however, produced unforeseen results that under certain circumstances significantly 
diverged from those observed with the sphere libraries. In particular, although the sphere tests 
demonstrated that the tree algorithm always outperformed the UC-MPE approach in terms of 
recognition accuracy as a function of likelihoods computed, experiments on real reference targets 
showed that this is not always the case.  
 It is inferred from this observation that the targets' (both the measured object and the 
reference library) respective geometries may lead to situations where the tree algorithm's 
motivation of increasing the number of low-likelihood-cost comparisons actually produces 
worst-case comparisons far more costly than its UC-MPE counterpart. For example, suppose that 
the measured point cloud arose from a tank and that the tree algorithm is attempting to determine 
in one branch which of two highly similar pickup trucks most likely produced the cloud; the 
performance estimation curves between those two trucks will cause the algorithm to request a 
large number of likelihood computation due to those vehicles' geometric similarity, and because 
the measured data came from neither of those reference targets, all that additional computation 
will be for naught.  
 

 5.  Sequential Hypothesis Testing  
As part of this effort, the research team developed a novel approach to classification that is 
particularly useful when the incremental cost of processing additional is significantly greater 
than the incremental cost of collecting the data. This situation can occur when high-level 
inferences are to be drawn from massive data collections. For example, the incremental cost of 
collecting one image from a high-resolution sensor on a loitering UAV platform is very small 
compared to the cost of extracting and fusing relevant information from that image. When timing 
is critical, it may make sense to selectively not process (or not fully process) all the data that has 
been collected. 
 This is a situation that apparently has not been previously discussed in the literature on 
statistical hypothesis testing. Many authors in both the statistics and pattern recognition 
communities have developed sequential inferencing algorithms that allow, among their possible 
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outcomes, a decision that more data must be collected to meet pre-specified accuracy 
requirements. However, these algorithms fully process all the data available at each stage. In 
contrast, while algorithms developed as part of this project can similarly infer that more data 
must be collected, they can subsequently limit the extent to which those data are processed. 
 This is a concept that is implicitly incorporated into most practical pattern recognition 
systems. For example, vision-based systems frequently segment out the most relevant regions of 
an image for analysis and disregard the rest. The algorithms developed in this project formalize 
the concept in the context of target classification, in which additional measurement data may be 
irrelevant with respect to some target hypotheses but highly relevant for others. The closest 
problem addressed in the statistics literature seems to be that of choosing the best available 
treatment. In these problems, multiple trials are run in parallel involving different treatments, and 
the goal is to decide which treatment provides the best result. There is often a desire to terminate 
any trial as soon as sufficient evidence exists that it is not the best treatment, but to allow other 
trials to continue. This is different from the classification problem addressed in this research 
project, which seeks the hypothesis that best explains a given set of sensor data. 
 The approach developed by the research team is to construct hierarchical classification 
algorithm that operates by repeatedly comparing pairs of target hypotheses. At each stage, the 
number of hypotheses under consideration is reduced by half as the unlikely targets are 
eliminated from consideration. In each comparison, a table lookup provides the quantity of 3D 
data that must be processed to select between the two hypotheses at a user-specified correct 
classification rate, and only this much data is processed. Target hypotheses are paired for 
comparison at each stage of the algorithm in an attempt to minimize the total number of 
computations that must be performed at each stage. Great computational savings are possible 
because the early stages involve pairings of easily distinguished targets, and processing large 
quantities of data is postponed for later stages that involve only a small number of hypotheses. 
 

 5.1 Sequential Hypothesis Testing Theory 
 The goal of a hypothesis testing procedure is to choose from among several possible 
hypotheses the one that best accounts for an observed set of data, if any. A fixed sample size 
procedure makes this choice after processing all available data. A sequential procedure, on the 
other hand, processes a variable amount of data, making a decision at each stage as to whether 
the collection of additional data is warranted. 
 More formally, suppose that a measurement process yields a sequence of random 
variables X1, X2, ..., drawn independently from some distribution, which could be one of a 

 known distributions or some other unknown distribution. The possibility that the data 
were drawn from the mth distribution is referred to as hypothesis m, denoted . The possibility 
that the data was drawn according to some other unknown distribution is referred to as the null 
hypothesis, denoted . 
 A fixed sample size test consists of a pair , where  is an integer constant 
indicating the number of sample observations to be processed, and  is a decision rule (i.e., a 
function) mapping the collection of observations  to one of the M distributions. 
The decision rule has the following interpretation: If , then  is 
asserted to be the best explanation for the observations. Of course, this assertion may be 
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incorrect, and the probability that the observations from class j are incorrectly declared to be 
from class m is . The class conditional probability of error is 

. 
 In a sequential test the value  is itself a random variable, being a function of the 
observations. That is, a sequential test is a pair , where  is called a stopping 
rule, and , called the final decision rule, maps observations  to one of the M 
distributions. As with a fixed sample size test, we are concerned with the various error 
probabilities  and . Additionally, we are concerned with the distribution of  when 
hypothesis  is true. Most sequential tests are characterized in terms of the average sample 
number (ASN), defined as . 
 For the two-hypothesis case, the sequential probability ratio test (SPRT) of Wald [12] has 
been shown to minimize the ASN over all tests that have class conditional probabilities of error 
no greater than some specified  and , regardless of which hypothesis is true. At each stage, 
the SPRT calculates the likelihood ratio of all available data and compares the result against two 
threshold values. If the likelihood ratio is smaller than the minimum threshold or greater than the 
maximum threshold, the corresponding hypothesis is selected. If the ratio lies between the two 
thresholds, the data are taken to be ambiguous, and additional data is collected. The test then 
repeats with additional data. 
 Many authors have reported on direct multi-hypothesis extensions of the basic SPRT [13, 
14, 15, 16]. Unfortunately, it can also be shown that this type of optimality cannot extend to 
problems with more than two hypotheses. That is, no sequential test can minimize the ASN, 
subject to upper bounds on the probabilities of error, simultaneously across all true hypotheses 
[17, Sec. 9.2]. It has recently been shown that the Mulithypothesis SPRT (MSPRT), which is 
similar in from to earlier SPRT extensions, is asymptotically optimal for arbitrarily small error 
probabilities,  [18, 19, 20]. Like the SPRT, all these tests compute the likelihood of the entire 
data collection under each hypothesis as every stage.  
 

 5.2 Sequential classification with Reject Option 
 In this section, we describe a new classification algorithm based on an alternative 
formulation of sequential multi-hypothesis test, in which a hypothesis is dropped from further 
consideration as soon as there is significant evidence that it is not correct. By dropping unlikely 
hypotheses from further consideration, the number of hypotheses, and thus the amount of 
processing for each new data sample, decreases with each stage. For some specific examples of 
this general approach, see [21,22]. 
 Suppose that when  is true, and observed data sample X has probability density 
function (PDF) . Given a collection of conditionally independent observed data 

, denote the log-likelihood of  as the sum 
 

 
Equation 12. Log-likelihood of  
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Note that  is a function of the observed data, and so it is itself a random variable. Let  
denote the cumulative distribution function (CDF) of  under the assumption that  is true. 
Optimal hypothesis testing algorithms are based on the fact that when  is not true, we expect 
the log-likelihood hypothesis  to be small. This implies that when  is not true, we expect 

 to be close to zero. 
 Working the other way, assuming that we want to determine whether or not  is true, 
we note that if , then there is a  percent probability that by pure chance alone 
an even less likely sequence of data would be observed if  were in fact true. This can form the 
basis of a discrimination test for whether or not to drop  at stage N. For example, suppose we 
pick some arbitrarily small quantity  and drop  at stage N from further consideration 
if . We can then be confident that there is less than a 1% chance that we have 
incorrectly rejected . 
 With this in mind, we define the sequential target classification procedure as follows. 
 

1. Define  to be the largest tolerable false rejection rate for the problem 
 

2. Initialize the stage number  and let  be the set of target classes 
initially under consideration 
 

3. Increment n by one, collect observation  and compute  for each  
 

4. Let  be the set of target classes still under consideration 
after stage n 
 

5. If , report 
 
(a)  as the most likely hypothesis found at the end of stage n; 
(b)  as the significance of that hypothesis; and 
(c) as the set of feasible alternatives. 

 
6. If , report that all of the known target  hypotheses have been rejected 

 
7. If  go to step 3, otherwise terminate. 

 
 Note that, while the formulation is slightly different, the algorithm shares many properties 
of the pairwise hierarchical algorithm originally developed by the research team. In particular, it 
has an anytime capability, reporting the most likely target at each stage as well as the set of 
feasible alternative targets (i.e., those that cannot be ruled out at  significance). The sets 

, for   for a dynamically constructed, nested set of target super-classes, similar to 
the nested classes produced by the pairwise algorithm. Also, it can be executed in a multi-pass 
function, with an initial  assignment that is gradually reduced. 
 Unlike the pairwise algorithm, this algorithm comes with a performance guarantee: When 
the algorithm has terminated there is less than a  percent chance that the correct hypothesis 
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was rejected, regardless of which hypothesis was actually correct. Moreover, this algorithm can 
correctly reject all target hypotheses in the case that observations were produced by a previously 
unknown target class. 
 

 5.3 Distribution of Log-Likelihoods 
 For the algorithm of the previous section to be practical, one must be able to evaluate the 
CDFs of the log-likelihoods  for each m and arbitrary values of n. In general, closed-form 
expressions of these functions will be difficult to determine. As an alternative, we can assume an 
approximate form and use sample log-likelihood values to find best-fit distribution consistent 
with this form. In this section we consider three possible alternatives that adopt this strategy. 
 When  is true, the quantity  is the sum of n independent, identically distributed 
random quantities, each with a distribution identical to that of . Each of the methods below 
attempts to characterize the distribution  and then turns that characterization into a 
corresponding characterization of  for arbitrary values of n. 
 

 5.4 Johnson Family 
 In this approach, we assume  follows a Johnson distribution for each value of n. The 
Johnson family is a four-parameter distribution that includes the Gaussian and log-normal 
distribution families as special cases. It has the property that for any valid combination of the 
first four central moments (mean, variance, skewness, kurtosis), a unique distribution exists 
within the family that possesses these moments. 
 To apply this method, we begin with the first four central moments of , defined as 
 

 

 

 

 
Equation 13. Central moments of  

 
In practice, these can be estimated from sample log-likelihood values. For other values of n, the 
first four moments of  can be found as 
 

 
 
 

 
Equation 14. Central moments of  

 
These estimated moments are then used to find a corresponding member of the Johnson family, 
and the significance values are calculated from the CDF of the resulting distribution. 
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 5.5 Polynomial Chaos Distribution Families 
 One alternative to the approach described above is to replace the Johnson family, which 
has a fixed parameterization, with a family of truncated polynomial chaos distributions. Such a 
family can be truncated at any level, allowing for an arbitrary number of free parameters with 
which to fit the distribution of . A polynomial chaos expansion of a random variable L with 
finite variance can be written as 
 

 
Equation 15. 

 
where equality is in the mean-square sense, the  are deterministic constants, Z is a random 
variable, and the functions  are polynomials forming a complete orthonormal basis with 
respect to the probability density function for Z. Many choices of Z and corresponding  are 
available, and the series above is provably convergent for each, as long as  has finite variance. 
Throughout this report, Z will represent a Gaussian random variable with zero mean and variance 
1/2. The function  will be the ith normalized Hermite polynomial. In practice, we will truncate 
the above sum to a total of I + 1 terms, 
 

 
Equation 16. 

 
 With this formulation, the approximating distribution of  is completely governed by 
the choice of I and coefficients . A method of moments formulation that parallels the Johnson 
family approach can be developed for the polynomial chaos approximation. It can be shown that 
the jth raw moment of the approximation in (5) is 
 

 
Equation 17. 

 
The expected values above are constants and can be computed off-line. The moments are thus 
polynomial functions of the  for any given choice of I. In what follows we choose I = 3 to give 
us four free parameters to match the original Johnson method. Note that the polynomial chaos 
approach allows for an arbitrary choice of I and thus an arbitrary representation accuracy. 
 The moments of the polynomial chaos approximating distribution with I = 3 can be 
shown to be 
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Equation 18. 
 

Equating these with the estimated moments of  from (3) yields a system of four polynomial 
equations in four unknowns, which can be solved to yield the desired coefficients. These 
coefficients completely characterize the approximation of , and the conditional cumulative 
distribution function  can be evaluated in terms of them. A variety of software tools exist 
for solving systems of polynomials, and any of these can be used to automate this procedure. 
 A potential drawback of the above approach is that we are not guaranteed to find a set of 
real-valued coefficients that yield the desired moments (i.e., the  may be complex). One 
solution is to introduce an additional coefficient , creating an overdetermined system of 
equations, and look for a real solution. Another is to reformulate the problem as one of 
minimizing  subject to the constraints that all coefficients are real 
and , , and . This approach may not be highly robust, and 
an alternative criterion may be preferred. 
 An alternative to the method of moments approach is based on the fact that the CDF is a 
sum of independent, identically distributed random variables can be expressed as an n-fold 
convolution. In general, if X and Y are independent random variables, the CDF of their sum can 
be expressed as 
 

 

 

 
 

Equation 19. 
 

Thus, for n = 2, the CDF , where  is the PDF of . We can generalize 
this result for any n as 
 

 
Equation 20. 

 
which involves the (n - 1)-fold self-convolution of . This expression for the CDF can be 
efficiently computed via Fourier transform techniques. 
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 5.6 Kernel Density Distribution Families 
 The approximation approaches discussed in the previous section are semi-parametric, 
meaning that they represent the desired distribution in terms of a finite collection of parameters, 
but the total number of parameter may be arbitrarily large. In this section we briefly discuss the 
family of kernel density distributions, originally introduced by Parzen. This method is based on a 
theorem stating that for a sequence of independent identically distributed random variables 

 and for any probability density function  that is symmetric, bounded, and has tails 
that go to zero sufficiently fast, the mixture density 
 

 
Equation 21. 

 
converges in a mean square sense to the distribution of the  whenever the constants  are 
chosen to go to zero sufficiently slowly. A similar statement can be made about the cumulative 
distribution function. A common choice of  is the standard Gaussian density function. 
 This suggests the following approach to modeling the distribution of . First, use (10) to 
find the Parzen estimate for the distribution of  based on samples of the single-point log-
likelihood when  is true. Then, for arbitrary n use the expression in (9) to find a Parzen 
estimate CDF of . The (n - 1)-fold self-convolution in that equation can be easily computed 
form the samples used to construct the distribution of , so there is no need to employ Fourier 
transform techniques. 
 

 6. Conclusions 
 Our empirical experiments suggest that more accurate performance estimates will amplify 
the benefit of the PBT algorithm. Future research might focus on the use of more general 
distributional forms to represent sums of log likelihoods. A variant algorithm worth exploring 
would be to use performance estimates to reduce the number of CAD model polygons used in a 
likelihood computation. In the extreme case only one polygon would be used and the method 
will converge to the Minimum Sum of Squared Distances (MSSD) algorithm. The MSSD 
algorithm has some undesirable properties detailed in [5]. It would be worth investigating if 
utilizing performance estimates mitigates the undesirable properties, while retaining the 
performance gains. The performance estimates could be generated using a small trial result set, 
similarly to the performance estimates described in Section 2.1.  
  The sequential hypothesis testing approach has the side effect of dynamically 
constructing a nested set of target super-classes. That is, target hypotheses that survive until the 
latest stages of the algorithm tend to be very similar in shape to one another and the target itself. 
Additionally, by making several passes through the algorithm while gradually increasing the 
specified correct classification rate, an anytime capability can be realized. When operated in this 
way, a sequence of classification results are produced with increasing confidence levels at each 
pass through the target hierarchy. This approach also includes a reject option that allows the 
algorithm to assert that none of the known target hypotheses corresponds to a given set of data. 
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This is an important addition, because practical target recognition systems can be expected to be 
confronted with data from objects that were not anticipated when the algorithm was 
implemented. Additionally, the amount of data processed for each hypothesis is a function of a 
data itself. This is in contrast to the PBT algorithm, in which the quantity of 3D data processed 
for each pairwise comparison is statically determined. Finally, the significance of results 
produced by the new method are easier to interpret because they follow directly from a user-
specified maximum error rate. For example, the user could directly specify that the probability of 
wrongly rejecting the correct target hypothesis must be less than 1%, regardless of which 
hypothesis is actually correct. As before, a multi-pass variant of this algorithm is possible, in 
which the maximum allowable error rate is gradually reduced. 
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